The submission is to be considered in the following category
- Oral presentation preferred
- Poster presentation only

Trainee status
- I am a trainee (student or postdoctoral fellow)
- I wish to be a candidate for best student paper/poster

PRESENTATION TITLE
4D-T2w MRI on an MR-linac

AUTHOR(S)
Joshua N. Freedman1,2; Oliver J. Gurney-Champion1; Simeon Nill1; David J. Collins1; Cynthia Eccles1,4; Trina Herbert1,4; Helen McNair1,4; Robert Huddart1; Martin O. Leach3; Uwe Oelfke2; Andreas Wetscherek2

1Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
2CR UK Cancer Imaging Centre, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
3Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
4Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, London, UK

ABSTRACT

Purpose:
To employ a super-resolution reconstruction (SRR) to calculate 4D-T2w MRI from low-resolution 2D-T2w MRI that was dynamically acquired on an MR-linac.

Materials & Methods:
Five healthy volunteers were scanned in free breathing at 1.5 T on an MR-linac (Elekta AB, Stockholm, Sweden) with a 2D-T2w turbo spin echo (TSE) sequence which was interleaved with a 1D liver-dome navigator (orientation: sagittal and coronal, voxel-size: 1.5x1.5x5 mm³, in-plane field-of-view: 264x384 mm², 50 slices, 10 dynamics, acquisition time: 9.6 minutes). For comparison, three volunteers were additionally scanned with a radial golden-angle 3D-T1w stack-of-stars spoiled gradient echo sequence (orientation: axial, voxel-size: 1.5x1.5x3 mm³, field-of-view: 384x384x200-288 mm³, acquisition time 7 min) and a 3D-T2w TSE sequence (orientation: axial, voxel-size: 1.5x1.5x3 mm³, field-of-view: 384x384x264 mm³, acquisition time: 9 min), which was gated to exhalation.

To calculate super-resolution 4D-T2w (4D-T2wSR) MRI, an initial guess (i4D-T2w MRI) was obtained by sorting the coronal and sagittal slices using the navigator signal into 8 respiratory phases. Stitching artefacts were reduced by smooth 3D registration of the exhalation phase to all other phases in the i4D-T2w MRI; generating a stitching artefact-free 4D-T2w (s4D-T2w) MRI. Afterwards, i4D-T2w MRI was registered on a slice-by-slice basis to the corresponding respiratory phase in the s4D-T2w MRI, resulting in corrected 4D-T2w MRI. This process was repeated separately for both the coronal and sagittal slices. The phases of the sagittal and coronal corrected 4D-T2w MRI were transformed to
midposition [1], averaged and served as input for SRR [2]. 4D-T2w^{SR} MRI was obtained by transforming the SRR results using motion information calculated from the coronal corrected 4D-T2w MRI [3].

4D-T2w^{SR} was compared to 4D-T2w^{MVFP} MRI, which was obtained by transferring the motion information from 4D-T1w (reconstructed using the XD-GRASP algorithm [4]) to 3D-T2w MRI [3]. To assess whether motion information was retained in 4D-T2w MRI, the liver-dome position in each respiratory phase of 4D-T2w MRI was calculated using an edge-detection method [3] and was compared to the displacement recorded by the 1D navigator acquisition.

Results:
4D-T2w^{SR} MRI (1.0x1.0x1.0 mm³) displayed greater image sharpness than 4D-T2w^{MVFP} MRI (1.5x1.5x3.0 mm³, 8 phases) (Figure. 1), possibly because 4D-T2w^{MVFP} MRI was reconstructed at a lower resolution. When compared to the range of the respiratory cycle obtained from the navigator acquisition (Table. 1), 4D-T2w^{SR} MRI exhibited over-regularisation of motion. An average difference of 2 mm between the ranges of respiratory motion obtained from 4D-T2w^{SR} and 4D-T2w^{MVFP} MRI was found, demonstrating good agreement. Remaining differences might be due to changes in respiratory pattern during acquisition. Both methods might be further accelerated to a clinical-time frame by optimization of parallelizable components.

Table. 1: Comparison between the range of motion from 4D-T2w^{MVFP} (MVFP), 4D-T2w^{SR} (SR) and the 1D liver-dome navigator signal.

<table>
<thead>
<tr>
<th>Volunteer</th>
<th>MVFP (mm)</th>
<th>SR (mm)</th>
<th>1D Navigator (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.1</td>
<td>8.7</td>
<td>17.8</td>
</tr>
<tr>
<td>2</td>
<td>11.6</td>
<td>8.2</td>
<td>14.7</td>
</tr>
<tr>
<td>3</td>
<td>4.1</td>
<td>5.3</td>
<td>12.5</td>
</tr>
<tr>
<td>4</td>
<td>NA</td>
<td>9.8</td>
<td>20.7</td>
</tr>
<tr>
<td>5</td>
<td>NA</td>
<td>4.2</td>
<td>13.9</td>
</tr>
</tbody>
</table>

Figure. 1: Comparison of 4D-T2w (4D-T2w^{MVFP}) and super-resolution 4D-T2w (4D-T2w^{SR}) MRI for volunteer 2.

Conclusions:
4D-T2w MRI can be obtained on an MR-linac to assist treatment delivery for anatomy undergoing respiratory motion.

References: