ABSTRACT SUBMISSION FORM

Please email to: info@mriinrt2018.com with ‘abstract’ as the subject

<table>
<thead>
<tr>
<th>Name (First, last)</th>
<th>Fatima Tensaouti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mailing address (including province/state, country, postal/zip code)</td>
<td>UMR 1214 - INSERM/UPS – ToNIC, Toulouse NeuroImaging Center CHU PURPAN - Pavillon Baudot Place du Dr Baylac, 31024 TOULOUSE - Cedex 3</td>
</tr>
<tr>
<td>Institution/organization</td>
<td>Inserm</td>
</tr>
<tr>
<td>Position</td>
<td>postdoctoral fellow</td>
</tr>
<tr>
<td>Telephone (including country prefix)</td>
<td>+33 (0)5 62 74 61 64</td>
</tr>
<tr>
<td>Email</td>
<td>tensaouti.f@chu-toulouse.fr ; fatima.tensaouti@inserm.fr</td>
</tr>
</tbody>
</table>

The submission is to be considered in the following category
- Oral presentation preferred
- Poster presentation only

Trainee status
- I am a trainee (student or postdoctoral fellow)
- I wish to be a candidate for best student paper/poster

PRESENTATION TITLE

Can conventional MRI predict survival in pediatric ependymoma patients?

AUTHOR(S)
Fatima Tensaouti, PhD*, Anne Ducassou, MD*, Léonor Chaltiel, BS†, Annick Sevely, MD†, Stéphanie Bolle, MD†, Xavier Muracciole, MD†, Bernard Coche-Dequant, MD†, Claire Alapetite, MD†, Stéphane Supiot, MD†, Ayméri Huchet, MD†, Valérie Bernier, MD†, Line Claude, MD†, Anne-Isabelle Bertozzi-Salamon, MD†, Samuel Liceaga, MSc†, Jean Albert Lotterie, MD†, Patrice Péran, PhD†, Pierre Payoux, MD, PhD†, Jean Albert Lotterie, MD, PhD†, Anne Laprie, MD, PhD†, On behalf of the radiotherapy committee of the French Society for Childhood Cancer (SFCE)

1. ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
2. Department of Radiation NeuroImaging, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse – Oncopole, Toulouse, France
3. Department of Biostatistics, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
4. Department of Radiology, CHU Purpan, Toulouse, France
5. Department of Radiation Oncology, Institut Gustave Roussy, Paris, France
6. Department of Radiation Oncology, CHU La Timone, Marseille, France
7. Department of Radiation Oncology, Centre Oscar Lambret, Lille, France
8. Department of Radiation Oncology, Institut Curie, Paris, France
9. Department of Radiation Oncology, Institut de cancérologie de l'ouest, Nantes, France
10. Department of Radiation Oncology, CHU Bordeaux, Bordeaux, France
11. Department of Radiation Oncology, Centre Alexis Vautrin, Vandoeuvre, Nancy, France
12. Department of Radiation Oncology, Centre Léon Bérard, Lyon, France
13. Department of pediatric, Hematology-OncoLOGY Unit, CHU Purpan, Toulouse, France
14. Department of Nuclear Medicine, CHU Rangueil, Toulouse, France
15. Department of Nuclear Medicine, CHU Purpan, Toulouse, France

ABSTRACT

Please type in your abstract up to a MAXIMUM of 500 words. Figures may be included.

Purpose:
Ependymoma is the third most common brain tumor in children. Radiation therapy (RT) is systematically administered after maximum surgical resection, utilizing recent advances in radiation delivery. Imaging can make a significant contribution to improving treatment outcome. This prompted us to look for significant preoperative and postoperative imaging markers for survival.

Materials & Methods:
A retrospective review of 121 patients who underwent primary resection of ependymoma followed by radiation therapy was undertaken utilizing quantitative volumetric analysis of pre- and postoperative MR images. Preoperative tumor volume (PRTV) on Post contrast (PC) T1 imaging, preoperative tumor volume ((PRTVF) on T2/FLAIR imaging, postoperative tumor volume on T2/FLAIR (POTVF) and Contrast Enhancement volume (CEPTVF) on PC-T1 imaging were delineated by an experienced radiation oncologist and double-checked by a neuroradiologist, after coregistration of T2/FLAIR imaging to the PC-T1WI. A survival analysis was done including clinical data (Gender, tumor location, tumor grade, the extent of resection, radiation dose) and extracted imaging volumes. All survival times were calculated from the date of beginning of RT. Overall survival (OS) and disease free survival (DFS) were estimated by the Kaplan-Meier method and using the following first-event definitions: local and distant relapse or death for disease free survival (DFS) and death for overall survival (OS). Univariate analyzes were performed using Cox proportional hazards model for quantitative variables and the log-rank test for qualitative variables. The hazard ratio (HR) (respectively, the survival rate at 3 years) is presented for each quantitative covariate (qualitative respectively) with 95% confidence interval. PRTV variable was dichotomized with the median value (<= 43.8 cc, vs> 43.8 cc) and POTVF variable with (0 (no) vs> 0 (presence))

Results:
After a median follow-up of 38.5 months, 80.2% of patients were alive, but 39.7% had experienced at least one event. Statistically significant differences between patients with and without postoperative FLAIR abnormalities were found for both DFS (71.9% vs. 40.3%; p = 0.006) and OS (93.7% vs. 72.4%; p = 0.023) in the univariate analyses, and for OS (p = 0.049) in the multivariate analyses.

Conclusions:
Postoperative FLAIR hyperintensities are a negative prognostic factor for intracranial ependymoma and may be a surrogate for residual disease. They could therefore prove helpful in patients’ surgical and radiotherapeutic management.