ABSTRACT SUBMISSION FORM
Please email to: info@mriinrt2018.com with ‘abstract’ as the subject

<table>
<thead>
<tr>
<th>Name (First, last)</th>
<th>Andreas Wetscherek</th>
</tr>
</thead>
</table>
| Mailing address (including province/state, country, postal/zip code) | Joint Department of Physics
15 Cotswold Road, Sutton, SM2 5NG
United Kingdom |
| Institution/organization | The Institute of Cancer Research |
| Position | Postdoctoral Training Fellow |
| Telephone (including country prefix) | +44 208 661 3490 |
| Email | andreas.wetscherek@icr.ac.uk |

The submission is to be considered in the following category
☐ Oral presentation preferred
☐ Poster presentation only

| Trainee status |
I am a trainee (student or postdoctoral fellow) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
I wish to be a candidate for best student paper/poster |

PRESENTATION TITLE

Hybrid UTE/Dixon Acquisition for synthetic CT generation

AUTHOR(S)

Andreas Wetscherek¹, David J. Collins², Simeon Nill³ and Uwe Oelfke¹

¹Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation, London, UK
²CR UK Cancer Imaging Centre, The Institute of Cancer Research and The Royal Marsden NHS Foundation, London, UK
³University College London, Institute of Neurology, London, UK

ABSTRACT

Purpose: Synthetic CT is an integral part of an MRI-only workflow for radiotherapy treatment planning on hybrid MRI-Linacs. Complex anatomy might require information on lung and bone density in addition to fat-water segmentation. The proposed k-space trajectory combines a 3D radial *Koosh ball* sampling for ultra-short echo time (UTE) imaging with a *stack-of-stars* acquisition for Dixon imaging and was optimized with the goal of minimizing slew rate demands to the MRI gradient hardware.

![Figure 1a: MRI gradient scheme corresponding to light red k-space trajectory in b,c. b: polar view (ϕ=0 equals kₓ=0) and c: side view (stack-position kₓ) of first seven TR d: self-gating signal from k=0.](image)

Figure 1a: MRI gradient scheme corresponding to light red k-space trajectory in b,c. b: polar view (ϕ=0 equals kₓ=0) and c: side view (stack-position kₓ) of first seven TR d: self-gating signal from k=0.
Materials & Methods: The k-space trajectory was calculated in MATLAB 2017b (The MathWorks, Inc., Natick, US) for an isotropic resolution of 1.25 mm and a coronal field-of-view of 400x400x320 mm³. A sample TR is shown in Fig.1a. Readout started at $\text{TE}_{\text{UTE}}=80 \mu s$ following a hard pulse with a density-adapted [1] 3D radial projection. Sampling of polar angle ϕ (Fig.1b) and its endpoint coordinate k_z (Fig.1c) was governed by 2D golden means [2], with $\Delta \phi=5^\circ$ increments for opposed- and in-phase echo (both acquired at stack position k_z). Asymmetry of the opposed-phase echo ($\text{TE}_{\text{opp}}=2.38 \text{ ms}$) depended on k_z, while the in-phase echo ($\text{TE}_{\text{inp}}=4.76 \text{ ms}$) was acquired symmetrically. The sequence was implemented on a 1.5 T Siemens Aera scanner and 50000 radial projections with TR=7ms were acquired in free breathing (total scan time ≈6 min) in a consenting 70 year old male patient diagnosed with stage 4 lung cancer. A self-gating signal (Fig. 1d) was obtained by PCA of magnitude and phase of the k-space center signal with a temporal resolution of 98 ms (14x TR). A NUFFT-based image reconstruction was performed using the Michigan Image Reconstruction Toolbox [3].

Results:

![UTE, opposed-phase, in-phase images](image-url)

Figure 2: UTE (left), opposed-phase (middle) and in-phase (right) images reconstructed at 1.25 mm isotropic resolution acquired in free breathing in a lung cancer patient. Lung parenchyma is well visualized in the UTE image. Apart from minor streaking in the in-phase image, no artifacts are present.

Conclusions:

Combined UTE and Dixon MRI with high spatial resolution from only one MRI acquisition is feasible in free breathing in the thorax, which has previously only been demonstrated in the head [4]. Once techniques for reduction of streaking artifacts (particularly at TE_{inp}) are implemented, the imaging data, which provides information on lung density, water and fat, can be used for synthetic CT generation. Gradient encoding specifications were chosen such that the trajectory could be run on virtually every available 1.5 T MRI system on the market, particularly with high-field hybrid MRI-Linacs in mind. SNR at TE_{opp} was low, but could be increased by a joint image reconstruction. Robust self-gating—potentially enabling 4D synthetic CT—is feasible.

References: